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Abstract
The singular one-dimensional periodic Scarf potential is regularized by means
of one-parameter square well counter-terms. It is shown that the regularized
spectrum converges formally to the conventional Scarf energy bands for
specific values of the parameter. The behaviour of the regularizations under
supersymmetric transformations is also investigated; this is a key point for the
algebraic solvability of the regularized Scarf potential.

PACS numbers: 03.65.Ge, 03.65.Fd, 03.65.Ca

1. Introduction

In this paper we will deal with the one-dimensional Scarf potential [1] considered as a periodic
and singular potential in the framework of non-relativistic quantum mechanics. Our aim is
to regularize the singularities to get a physically sensible band structure and also to study
the behaviour of these regularizations under Darboux—also called supersymmetric (susy)—
transformations.

The regularization of singular potentials is a problem that already arose at the early
stages in the development of quantum mechanics. Some general discussions on this topic
can be found in [2] and [3]. In particular, it was also considered in the original papers
by Scarf [1] concerning the potential bearing his name that will here be referred to as the
‘conventional’ Scarf potential. In general, the process consists in substituting, inside some
intervals containing the isolated singularities, the original potential by non-divergent terms.
Usually it is also required that certain properties of the new system behave properly in the
limit when the radius of these intervals goes to zero and, at the same time, the regularization
terms are modified accordingly. A similar situation appears in effective field theories
(see e.g. [4]).
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There are other approaches to regularization. For example, analytic prolongation in the
complex plane has been applied to avoid singularities in the real axis, either by surrounding
the singularity [1], or by moving it slightly into the imaginary axis [5]. The subject can also
be presented from a more abstract point of view by removing the singular points of the real
axis and imposing boundary conditions on the wavefunctions to determine domains for the
relevant self-adjoint operators [6]. However, when using this method it is quite difficult to
interpret the resulting solutions from a physical point of view.

Here we want to address the regularization question following the first approach keeping
always in touch with physics. First, we substitute the Scarf potential V by what we will call
‘ε-regular’ potential Vε differing in the intervals with radius ε around each singularity, as
previously mentioned, with the following conditions: (i) for each ε we have a regular periodic
potential with a band structure and discrete eigenfunctions for the band borders; (ii) in the limit
ε → 0, we get a well-defined and nontrivial limit for such band spectrum and eigenfunctions;
(iii) for any ε �= 0 the ε-regular potential Vε constitutes a global aproximation to the limiting
values. We will see that, after a detailed analysis, we are faced with all these possibilities:
regularization cases where the limit is rather trivial; the limit exists and defines a consistent
periodic quantum system but is only locally similar to that given by Vε , and finally a very
special case where all the requirements are satisfied.

In the final section of the paper we will investigate how this regularization process is
affected by susy transformations. We will show that, if we start with a regularization of the
Scarf Hamiltonian, then a suitable susy transformation automatically provides a regularization
of the partner Hamiltonian. In other words, we can say that susy transformations are consistent
with regularizations (another point of view, where the regularization is suggested by the susy
transformation, is displayed in [7]). This consistency is crucial for the solvable character of the
regularized Hamiltonian: since the Scarf potential requires a regularization to have a physical
meaning, the algebraic methods that rely on supersymmetry to solve the system can only be
applied if there exists a regularization scheme that is consistent with supersymmetry.

2. The Scarf potential revisited

Let us consider a particle in the presence of the one-dimensional periodic Scarf potential

V (x) = V0

sin2 x
V0 ∈ R. (2.1)

The related Schrödinger equation Hψ(x) = Eψ(x) can be rewritten as[
− d2

dx2
+

α

sin2 x
− λ2

]
ψ(x) = 0 (2.2)

where α ≡ 2mV0/h̄
2, λ2 ≡ 2mE/h̄2 = E (note that λ may be a real or purely imaginary

number). This potential (2.1) is π -periodic and it can be a useful idealization of a crystal
lattice. It has strong singularities at xm = mπ,m ∈ Z, in whose neighbourhood the
potential has an attractive or repulsive character according to the sign of the strength V0.
We shall fix our attention primarily on the interval (0, π), in which equation (2.2) admits two
linearly independent eigenfunctions for a given eigenenergy λ2. They can be determined
by changing the independent variable to y = sin2 x/2, as well as the ψ function as
ψ(x(y)) = yµ(1 − y)νϕ(y), where the parameters µ, ν are chosen in such a way that the
new function ϕ(y) satisfies a hypergeometric equation [8]. It is also convenient to introduce
a parameter k, defined by α = k(k − 1). Then, one arrives at the general solution

ψ(x) = Au(x) + Bv(x) (2.3)
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where

u(x) :=
(

sin
x

2

)k (
cos

x

2

)1−k

2F1

(
1

2
+ λ,

1

2
− λ,

1

2
+ k; sin2 x

2

)
(2.4)

v(x) :=
( sin x

2

)1−k

2F1

(
1 + λ − k, 1 − λ − k,

3

2
− k; sin2 x

2

)
. (2.5)

Note the implicit dependence of u and v on λ and k. The constants A,B are arbitrary, and k
is constrained by k �= ±n − 1/2, n = 0, 1, 2, . . . , in order to avoid solutions with logarithmic
singularities. In other words, α ∈ (−1/4, 3/4) ∪ (3/4, 15/4) ∪ · · ·.

In order to construct physical eigenfunctions ψ , normalized in the interval (0, π), let us
analyse the behaviour of the basis (2.4)–(2.5) near the boundaries of the interval. At the left
edge, x → 0+, they behave as

u(x) ≈
(x

2

)k

v(x) ≈
(x

2

)1−k

. (2.6)

Near the right end point we can write x = π − δ and, by taking δ → 0+, get x → π−. Thus
we have the following expressions [8]:

u(π − δ) ≈ cos(πλ)

cos(πk)

(
δ

2

)k

+
π cos−1(πk)

	(k + λ)	(k − λ)

(
δ

2

)1−k

(2.7)

v(π − δ) ≈ − π cos−1(πk)

	(1 + λ − k)	(1 − λ − k)

(
δ

2

)k

− cos(πλ)

cos(πk)

(
δ

2

)1−k

. (2.8)

As we can see, the analytical properties of u(x) and v(x) depend on the eigenvalue λ2 and on
the potential strength α by means of the parameter k. Next, we summarize the results classified
in terms of k.

• Discrete spectrum (3/4 < α, or 3/2 < k). The terms (x/2)1−k and (δ/2)1−k in (2.6)–
(2.8) strongly diverge and they give rise to wavefunctions not square integrable in (0, π).
Therefore, we must take B = 0 and at the same time the coefficient of (δ/2)1−k in (2.7)
must vanish. This last condition is achieved if k ± λ = −n and it is responsible for a
discrete spectrum:

En = λ2
n ≡ (k + n)2 n = 0, 1, 2, . . . . (2.9)

Thus, the physical solutions are bound states given by

ψn(x) = An

[
sin

x

2

]k [
cos

x

2

]1−k

2F1

(
1

2
+ k + n,

1

2
− k − n,

1

2
+ k; sin2 x

2

)
. (2.10)

These solutions are such that

lim
x→π−

ψn(x) = lim
x→0+

ψn(x) = 0.

We can associate them with the states of a particle in the interval (0, π).
• Continuous spectrum (−1/4 < α < 3/4, or 1/2 < k < 3/2). For a strength α such

that −1/4 < α < 3/4, all terms in (2.6)–(2.8) are square integrable and thus, all the
solutions are also square integrable in (0, π). Of course, due to the periodicity, the same
will happen with the solutions in any interval (mπ, (m + 1)π), m ∈ Z. From this set of
solutions we can construct quasi-periodic functions [9], provided some rules are given to
match the solutions on both sides of each singularity. The different ways to achieve this
is the central problem of regularization. Once these rules are satisfactorily fixed, we can
speak of the regularized Scarf potential which can be seen as a periodic potential, thus
sharing the corresponding properties such as band structure, etc [1].
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−π 0 π

0

Figure 1. General aspect of the ε-regular Scarf potential Vε for given values of ε, a and q.

• Unphysical case (α < −1/4, or k = 1/2 ± id). Replacing k = 1/2 + id for instance in
(2.6) we see that the behaviour of the fundamental solutions near the singularities give
rise to wildly oscillating functions in the form ψ(x) ≈ Ax1/2 cos(d log x + B), where
A,B are constants [10]. So, in this case also the general solution is square integrable and
therefore we can establish connection rules in the singularities. However, in this way we
are led to a spectrum which is not bounded from below [2, 11], hence we will discard this
case from our dicussion.

In the neighborhood of xm = mπ,m ∈ Z, the Scarf potential behaves as α/x2. This kind
of power law describes the transition between regular and singular potentials as indicated by
Landau and Lifshitz [10]. In models with such singularities, one regularization scheme that
has been used successfully is that of [2], which uses square well counterterms to control the
singularities. In this paper, we shall use such a regularization scheme in analysing the Scarf
potential in the continuous spectrum regime. We will concentrate on the repulsive region
1 < k < 3/2, as a complement to the work of Scarf, which deals exclusively with the atractive
interval, 1/2 < k < 1.

3. Regularizing singularities

We shall substitute the initial potential (2.1) by a ‘more realistic’ one Vε(x) (see figure 1),
which we will call an ε-regular Scarf potential:

Vε(x) =




νε = −a2

εq
, x ∈ (mπ − ε,mπ + ε), m ∈ Z

k(k − 1)

sin2 x
, otherwise.

(3.1)

The cutoff range ε > 0 is intended to be as small as one wishes, while the cutoff strength
a2 and the power law ε−q are to be determined. We look for the potential Vε(x) admitting
well-defined energy bands and wavefunctions in the limit ε → 0. The limit of such a potential
as Vε(x), if it exists as a generalized function, will be called the ‘regularized Scarf potential’
Vs(x). Now, as is well known, the monodromy matrix [12] allows us to get all the physical
description of periodic potentials like (3.1). Hence, we shall proceed in the following manner:
we obtain first the monodromy matrix Mε , related to Vε(x) for a given cutoff ε; then, we shall
evaluate the limit ε → 0, just as is usual in distribution theory. The appropriate values of a and
q will be obtained as an immediate result by imposing that the matrix elements of limε→0 Mε

must be well defined.
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3.1. Crossing a singularity

In order to construct the monodromy matrix Mε , it is necessary to obtain first the transfer
matrix Tε connecting the wavefunctions at both sides of the well. Hence, let us consider the
general eigenfunction ψ(x) for the potential (3.1), corresponding to a given eigenvalue λ2. In
a natural manner, ψ is defined in the three regions surrounding the point x0 = 0 (see figure 1).
Thus, by considering an appropriate basis, we have

ψ1(x) = A1u(−x) + B1v(−x), x � −ε

ψ2(x) = A2 sin(px) + B2 cos(px), −ε � x � ε

ψ3(x) = A3u(x) + B3v(x), x � ε

(3.2)

where u(x) and v(x) are given by (2.4)–(2.5), Aj , Bj , j = 1, 2, 3, are constants related by the
matching conditions at ±ε and

p =
√

λ2 − νε (3.3)

is the kinetic energy inside the domain of the cutoff potential. Hence, in this basis, the action
of the transference matrix Tε is as follows:(

A3

B3

)
= Tε

(
A1

B1

)
. (3.4)

Near the matching points, −ε and ε, the behaviour of ψ(x) when ε ≈ 0 is given by

ψ1(x) ≈ A1(−x)k + B1(−x)1−k, x � −ε

ψ3(x) ≈ A3x
k + B3x

1−k, x > ε
(3.5)

while the kinetic term (3.3) behaves as

p ≈ aε− q

2 ε � 0. (3.6)

Taking into account (3.2) and (3.5), one easily obtains the expression for the elements tij of
the matrix Tε when ε � 0:

−(2k − 1)t11 = cos(2pε) + (εp + k(k − 1)ε−1p−1) sin(2pε) (3.7)

(2k − 1)ε2kt12 = 2(k − 1)ε cos(2pε) + (−pε2 − (k − 1)2p−1) sin(2pε) (3.8)

(2k − 1)ε2−2kt21 = 2kε cos(2pε) + (ε2p − k2p−1) sin(2pε) (3.9)

(2k − 1)t22 = −(2k − 1)t11. (3.10)

As 1 < k < 3/2, the matrix elements tij will have a finite limit when ε → 0 if q = 2 and the
cutoff strength a satisfies any of the following periodic conditions:

Type I : k = 1 + a tan a (3.11)

Type II : k = 1 − a cot a. (3.12)

Hence, we have respectively

Type I : lim
ε→0

Tε =
(−1 0

0 1

)
(3.13)

Type II : lim
ε→0

Tε =
(

1 0
0 −1

)
. (3.14)



10084 J Negro et al

In each case, the leading orders of the independent solutions are transformed by Tε as follows:

Type I : (−x)k → −xk, (−x)1−k → (−x)1−k (3.15)

Type II : (−x)k → xk, (−x)1−k → −(−x)1−k. (3.16)

The regularization of type I allows us to recover the results for the free particle potential as
a particular case by taking simply k = 1. Type II, on the other hand, produces an additional
change of global phase eiπ .

3.2. The monodromy matrix

Let us recall here some basic results about the Schrödinger equation in a π -periodic potential
such as Vε(x) (3.1),

Hεψ = λ2ψ. (3.17)

As the translation operator L, defined by Lψ(x) = ψ(x + π), commutes with Hε , then inside
each two-dimensional λ-eigenspace (3.17) we can also find at least one L-eigenfunction such
that

Lψ(x) = ψ(x + π) = µψ(x) = eiσπψ(x). (3.18)

These are the Bloch functions. Only the Bloch functions with |µ| � 1 are suitable bounded
generalized eigenfunctions from a physical point of view. The corresponding λ-eigenvalues
constitute the alowed energy bands, and the real parameter σ is then called the crystal
momentum in solid state physics [12]. The other Bloch functions are not bounded either
when x → +∞ or when x → −∞, and the respective values of λ belong to the forbidden
bands.

Usually relation (3.18) is expressed with the help of a basis of λ-eigenfunctions
{ξ(x), χ(x)} such that ξ(0) = 0, ξ ′(0) = 1 and χ(0) = 0, χ ′(0) = 1. In this basis the
operator L is represented by the matrix M with the elements mij ,

Lξ(0) = ξ(π) = m11ξ(0) + m12χ(0)

Lχ(0) = χ(π) = m21ξ(0) + m22χ(0).
(3.19)

It is obtained that m11 = ξ(π),m12 = χ(π),m21 = ξ ′(π),m22 = χ ′(π).
In our case, in order to include the singular points, we will work with the interval

[ε, π + ε], and instead of the standard basis defined above, here we adopt the more natural
basis {u(x), v(x)}. The corresponding matrix (3.19) under these assumptions will be called
(with a certain abuse of langage) the monodromy matrix Mε [12] for the ε-regular potential.
Next, we will evaluate the limit ε → 0 of this matrix.

Thus, Mε can be decomposed as the product of Tε with a new matrix Nε , which
connects ψ(ε) (in the basis {u(x), v(x)}) with ψ(π − ε) (in the basis {u(π − x), v(π − x)}).
Schematically,

Nε : ψ(ε) 	→ ψ(π − ε) (3.20)

Tε : ψ(π − ε) 	→ ψ(π + ε) (3.21)

Mε = TεNε : ψ(ε) 	→ ψ(π + ε). (3.22)

Indeed, Nε is such that tr Nε = 0, det Nε = −1, and it produces but a change of basis which
is independent of ε (see equations (2.7), (2.8)). The explicit form of this matrix is

Nε = 1

cos(πk)


 cos(πλ) − π

	(1 + λ − k)	(1 − λ − k)
π

	(k + λ)	(k − λ)
−cos(πλ)


 . (3.23)
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The matrix Tε , on the other hand, embraces the previously defined conditions of regularization
(3.11)–(3.12) and, in general, depends on two parameters ρ and θ , which are either both
real or both pure imaginary numbers, and which can be determined by the cutoff ε and the
eigenvalue λ2:

Tε =

cos θ ρ sin θ

sin θ

ρ
−cos θ


 . (3.24)

The eigenvalues of the monodromy matrix Mε are given by the characteristic polynomial
P(µ) = µ2 − Dµ + det Mε = 0, where det Mε = det(TεNε) = 1 and D = D(λ) ≡ tr Mε :

D = 2 cos(πλ) cos θ

cos(πk)
+

[
ρ

	(k + λ)	(k − λ)
− 1

ρ	(1 + λ − k)	(1 − λ − k)

]
π sin θ

cos(πk)
.

(3.25)

Hence, the eigenvalues of Mε are given by

µ± = D

2
±

√
D2

4
− 1. (3.26)

If |D| > 2, then (3.26) leads to real values of µ± such that |µ±| �= 1, which correspond to
eigenvalues in a forbiden band. If |D| � 2, then µ± are complex numbers of modulus 1

µ∗
− = µ+ = eiσπ , σ ∈ R, (3.27)

which, in turn, correspond to eigenvalues λ2 inside an allowed energy band. In particular,
λ(µ)-values with µ± both equal to +1 or −1, correspond to the edges of the Brillouin zones.

4. Band structure

4.1. Energy bands of the regularized Scarf potential

We have already mentioned that the regularized Scarf potential Vs is obtained as limε→0 Vε in
a certain sense. Let us analyse the involved energy bands. First, note that the matrix Nε in
(3.23) is independent of ε, while limε→0 Tε for type I regularization gives the matrix (3.13) or
equivalently (3.24) with θ = π (for type II this limit is (3.14) or (3.24) with θ = 0.) For each
of these cases we get

tr Ms = ±2 cos(πλ)

cos(πk)
. (4.1)

Therefore, for both types, condition D = tr Ms = ±2 is reached by the values λ = k + �, � ∈ Z,
which in turn defines the energy band edges:

E� = λ2
� = (k + �)2, � ∈ Z. (4.2)

It is easy to see that if k ∈ (1, 3/2), then E−1 < E−2 < E0 < E−3 < E1 < E−4 · · ·, and the
allowed energy bands are delimited as follows:

[E−1, E−2], [E0, E−3], [E1, E−4], . . . , [En−1, E−2−n], . . . . (4.3)

The eigenfunctions in [0, π ] corresponding to the band borders are of two kinds: either
λ = k + n, n ∈ Z

+, with ψλ(x) ∝ u(x, λ, k), or λ = k − n, n ∈ N, with ψλ(x) ∝ v(x, λ, k),
where we have made explicit the dependence of u and v on λ and k. To construct the solutions
in other intervals, one has to make a symmetric or antisymmetric periodic extension depending
on the type of regularization considered (see relations (3.15) and (3.16)). Finally, note that
the energy bands obtained in this section for the regularized Scarf potential with k ∈ (1, 3/2)

coincide with those already known for the conventional Scarf potential for k ∈ (1/2, 1).
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Figure 2. The trace of the monodromy matrix for the regularized Scarf potential (solid curve) and
for the ε-regular Scarf potential with ε = 0.1, a = 0.5 ∈ AI

0 (dashed curve).

4.2. Bands of the ε-regular potentials Vε(x)

Now we will discuss the energy bands of the potential Vε(x). We will concentrate mainly
on the regularizations satisfying equations (3.11)–(3.12). Since they are transcendental
equations, some numerical approximations will be necessary (however, there are also analytical
expressions for the multiple solutions, see [4]). We will show the way in which our (numerical)
solutions approximate to those obtained by Scarf with arbitrary precision.

Starting with type I, for a given value of k ∈ (1, 3/2), the condition k = 1 + a tan a in (3.11)
has infinite solutions for a � 0, one in each interval ((n − 1/2)π, (n + 1/2)π), n = 0, 1, . . . .

If k covers its whole range, k ∈ (1, 3/2), then a takes values on some sub-intervals, let us call
them AI

n ⊂ ((n − 1/2)π, (n + 1/2)π).
On the other hand, once k is fixed, the equation k = 1 − a cot a for type II regularizations

also leads to multiple solutions for a, one in each interval (nπ, (n + 1)π), n = 0, 1 . . . .

Again, if we cover the whole interval k ∈ (1, 3/2), then a is restricted to some sub-intervals
AII

n ⊂ (nπ, (n + 1)π).
As we shall see, only the solutions of a ∈ AI

0 will give rise in the limit ε → 0 to a
sensible physical Hamiltonian, bounded from below. The other solutions lead, besides the
Scarf positive energy bands, to infinite negative energies in the limit ε → 0 and therefore are
not fully satisfactory. For other values not satisfying either of the two equations (3.11)–(3.12),
the spectrum degenerates into discrete values in the limit ε → 0, as will be discussed later.

4.2.1. Type I regularizations. Let us consider equation (3.11) and, once k is fixed, let us take
the solution in the first sub-interval: a ∈ AI

0 = (0, a0), where a numerical calculation gives
a0 = 0.653 271. The energy band structure is adequately described by a plot of the trace of the
monodromy matrix, as represented in figure 2 by a dashed line (in this plot the results for the
Scarf potential are also included as a solid line). There, we can appreciate a good qualitative
approach between both spectra, especially in the energy range of the lowest allowed bands.
For smaller values of ε, a much better approximation is obtained for a wider range of energies.

In general, the eigenfunctions corresponding to the band edges are of two classes. The
cosine-type solutions are defined in the interval (−ε, π + ε) as follows:

ψ±
c (x; ε) =




cos(px) −ε < x � ε

Au(x) + Bv(x) ε � x � π − ε

±cos(p(x − π)) π − ε � x < π + ε.

(4.4)
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2

-3

-1

π/2

π/2

1

π/2-

3

π/2-

1

3

(a) (b)

Figure 3. The lower (a) and first excited (b) energy band edge eigenfunctions of the Scarf potential
(dashed curves) and the ε-regular one Vε (solid lines) for ε = 0.1, a = 0.5.

The energy quantization is obtained from the (anti) periodic condition

−p tan(pε) =
[
u′(ε) ∓ u′(π − ε)

u(ε) ± u(π − ε)

]
=

[
v′(ε) ∓ v′(π − ε)

v(ε) ± v(π − ε)

]
(4.5)

and the coefficients A,B are obtained from these values of p plus some Wronskians

A = W(cos(px), v(x))

W(u, v)

∣∣∣∣
x=ε

B = W(u(x), cos(px))

W(u, v)

∣∣∣∣
x=ε

. (4.6)

These solutions soften the divergences of certain eigenfunctions for Vs such as the one shown
in figure 3. The ε-regular solutions also explain the origin of divergent solutions in the Scarf
potential: there are deep regularization wells at the singularity points which give rise to such
a behaviour.

The sinus-type solutions for Vε are defined by

ψ±
s (x; ε) =




sin(px) −ε < x � ε

Cu(x) + Dv(x) ε � x � π − ε

±sin(p(x − π)) π − ε � x < π + ε

(4.7)

where the discrete p values are obtained from

p cot(pε) =
[
u′(ε) ± u′(π − ε)

u(ε) ∓ u(π − ε)

]
=

[
v′(ε) ± v′(π − ε)

v(ε) ∓ v(π − ε)

]
(4.8)

and the coefficients are computed with the help of the expressions

C = W(sin(px), v(x))

W(u, v)

∣∣∣∣
x=ε

D = W(u(x), sin(px))

W(u, v)

∣∣∣∣
x=ε

. (4.9)

This class of solutions is quite close to that of Scarf in the whole real line since they vanish at
the singular points.

Now let us consider the solution of (3.11) in the second subinterval a ∈ AI
1 = (a1, a2),

where a1 = π and a numerical computation gives a2 = 3.292 31. In figure 4 we have
represented the trace of the corresponding monodromy matrix Mε , for some specific values
of the parameters. As we can see, the non-negative allowed energies also constitute a good
approximation to the conventional Scarf energy bands, but there are two additional very narrow
negative allowed bands which are absent in the Scarf case. Note that, for an arbitrary cutoff
ε �= 0 and a ∈ AI

1, the negative allowed energies admit bounded eigenfunctions and the
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Figure 4. The monodromy matrix trace for the ε-regular Scarf potential Vε , with a = 3.226 and
ε = 0.1. A couple of negative narrow allowed bands of energy may also be seen.
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Figure 5. The lower (a) and first excited (b) band-edge eigenfunctions in the positive energy sector
of the Scarf potential (dashed curves) and the ε-regular one Vε (solid lines) for ε = 0.1, a = 1.727.

potential Vε represents an admissible physical situation. The limiting case Vs = lim→0 Vε ,
in contrast, is far from being physically sound and is not a ‘realistic’ potential: although its
positive energy bands converge to those of Scarf, the negative ones go to minus infinity, which
gives rise to unstable systems (or to Hamiltonians not bounded from below). The same can
be said about other type I bands for a ∈ AI

n�=0.

4.2.2. Type II regularizations. A similar discussion is valid for the solutions of type II in
equation (3.12). The first band AII

0 supplies a good approximation for the spectrum, as well
as for the eigenfunctions of the (conventional) Scarf potential. However, since AII

0 contains
bigger values of a than those of AI

0, we have two consequences: (i) a change of sign, with
respect to the type I solutions, appears when crossing every well of width 2ε (compare figure 5
with figure 3). This change of sign has no effect on the band structure in the limit ε → 0 in
the positive energy sector. (ii) There is an additional band, in the far negative energy sector,
whose edge eigenfunctions are represented in figure 6. This band, in the limit ε → 0, goes to
−∞, and at the same time becomes thinner and thinner. For the regularizations corresponding
to other solutions AII

n�=0 we have a similar situation, with an odd number of negative extra
bands. As discussed in the previous subsection, these type II solutions give rise only to a
partial approximation to the (conventional) Scarf spectrum.

Finally, we would like to highlight the important role played by the solutions of
equation (3.11)–(3.12), since the energy band structure is quite sensible to the cutoff
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Figure 6. Lower (a) and upper (b) eigenfunctions of type II regularization corresponding to the
band edges in the negative sector, ε = 0.1, a = 1.727.
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Figure 7. The solid curves correspond to the monodromy matrix of the regularized Scarf potential
for a = 0.5, already considered in figure 2. The dashed lines correspond to ε = 0.1 for a well
more shallow than a = 0.5 (a), and for a deeper well (b).

strength a2. Figure 7 shows the trace corresponding to the values of a slightly above or
below the solution a = 0.5 of (3.11), as shown in figure 2. It is clearly seen that the bands are
thinner and, in the limit ε → 0, they give rise to discrete solutions in the levels corresponding
to the u eigenfunctions. Thus, only for the specific values of a included in the type I and II
solutions, does the band spectrum not collapse into a punctual spectrum, converging to the
Scarf one.

5. k-susy regularized Scarf partners

Susy quantum mechanics allows us to build from an initial Hamiltonian H a susy partner
H̃ , both of them sharing many properties. Our aim in this section is to see whether these
preserved properties include the regularizations, and then try to get some consequences. We
will start with the regularized periodic Scarf system Hs (that is, including the rules to cross
the singularities), with the band structure and eigenfunctions characterized in section 4.1.
The regularization is provided by the family of ε-regular periodic potentials Vε following
the conditions of section 4.2. In this section we will use this regularization family in the
sense defined in the introduction that can be stated as follows: for any given (quasi-periodic)
eigensolution ψ of Hs , e.g., Hsψ = λψ , such that ψ(x + π) = eiσ ψ(x), we can choose a
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family of eigensolutions Hεψε = λεψε , of the same periodic type, ψε(x + π) = eiσ ψε(x),
such that when ε → 0, then λε → λ and ψε → ψ (the limit is taken at each point, except at
the singularities). In practice, we will work with the eigenfunctions of the discrete spectrum
(eiσ = ±1), so that the above conditions have already been described in detail in section 4.2.

Let us start with 1-susy transformations. For a fixed ε-regular periodic potential Vε , its
1-susy partner Ṽε is given by

Ṽε(x) = Vε(x) − 2β ′
ε(x), (5.1)

where the superpotential βε(x) is defined in terms of an eigenfunction Hεψε = λεψε (known as
a transformation function), through a logaritmic derivative: βε(x) = ψ ′

ε(x)/ψε(x). If we also
want Ṽε(x) to be real, periodic and without singularities, we must take a good transformation
function, i.e., λε ∈ (−∞, E0

ε

]
, where E0

ε is the ground energy, and ψε(x) is a (quasi) periodic
eigenfunction without nodes [13, 14]. In this way we arrive at a regular periodic system H̃ ε ,
whose band structure is the same as that of Hε . The quasi-periodic eigenfunctions φ̃ε(x) of
H̃ ε are obtained from those φε(x) of Hε corresponding to the same eigenenergy by means of
the usual intertwining relationship

φ̃ε(x) = φ′
ε(x) + βε(x)φε(x) = W(φε(x), ψε(x))

ψε(x)
(5.2)

where W(·, ·) stands for the Wronskian of the involved functions. There is just one exception
to the rule (5.2): if the transformation function is chosen to be the ground state ψ0

ε , then the
corresponding partner ground state is given by ψ̃0

ε = 1/ψ0
ε .

The same formulae are useful to construct the 1-susy partner Scarf Hamiltonian H̃ s from
Hs just by using a transformation function ψ , such that ψε → ψ . Then, we have a number of
properties that we enumerate below.

(1) If the transformation functions ψ are good (as defined above), the 1-susy partner Scarf
potentials Ṽs will be periodic with the singularities at the same points as Vs . Furthermore,
if for x ≈ 0 the initial singularities are of the type k(k − 1)/x2, those of Ṽs will behave as
(k − 1)(k − 2)/x2. Therefore, when 1 < k < 3/2, the initial potential is repulsive around
the singularities while the partner potential is attractive at these points. In particular, if we
choose as transformation function the ground state ψ0, then Ṽs = (k − 1)(k − 2)/ sin2 x.

(2) If the Hamiltonian H̃ s is endowed with the same matching conditions at the singular
points as those established for the regularized Hs , then Hs and H̃ s will have the same
band structure. The (quasi) periodic eigensolutions of H̃ s are obtained by the 1-susy
transformation (5.2) and automatically satisfy these boundary conditions. The
corresponding eigenfunctions for the same eigenvalue in the discrete spectrum have
opposite character, i.e., if ψn is either of type u (vanishing at the singular points) or v

(diverging at the singularities), then ψ̃n will be either of type v or u, respectively.
(3) The regular partner potentials Ṽε constitute a regularization for Ṽs in the same sense that

the potentials Vε were with respect to Vs . We can see in figure 8 that if the regularization
terms around the singularities were negative in the potentials Vε , they become positive for
the partner potentials Ṽε , as they should.

In figure 8(a) we have plotted the aspect of the 1-susy partner Ṽε(x) of our ε-regular
potential (3.1), and figure 8(b) represents the ground states for both potentials Ṽε(x) and
Vε(x). Figure 9 shows the superpotential β(x) of the Scarf system Hs using the transformation
function ψ0, together with the ε-regular superpotential βε(x) corresponding to φ0

ε .
On the other hand, the second-order susy partners of Hε make use of two of its

eigenfunctions
{
ψ1

ε , ψ2
ε

}
. In order to end with a periodic nonsingular potential these

transformation functions must be chosen quasi-periodic, belonging to the same forbidden
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Figure 8. (a) The 1-susy partner Ṽε (x) of the ε-regular Scarf potential Vε(x) for ε = 0.1 and
a = 0.5 (compare with figure 1). (b) The lower-band edge energy eigenfunction (continuous
curve) of the ε-regular potential (3.1) and its 1-susy partner for the same values of the parameters
as in (a).
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Figure 9. The superpotential β(x) for the ground state ψ0 of Hs (solid line) versus the ε-regular
superpotential βε(x) for the ground state φ0

ε of Hε (dashed line) with ε = 0.1 and a = 0.5. The
figure on the right displays a detail of the regularization.

band, and with a nonvanishing Wronskian. The simplest choice is to take the two border edge
eigenfunctions of any finite (forbidden) band, for instance the j th one: {ψε(x; εj ), ψε(x; εj ′)},
where εj and εj ′ are respectively the eigenenergies [13]. The construction of the second-order
susy partner Ṽε(x) of Vε(x) requires a calculation with the Wronskians:

Ṽε(x; εj , εj ′) = Vε(x) − 2
d2W(ψε(x; ε1), ψε(x; ε2))

dx2
. (5.3)

All the new potentials Ṽε(x; εj , εj ′) constructed in this way are isospectral with the initial one
Vε(x). The partner eigenfunctions are computed in the usual way:

φ̃ε(x) = W(φε(x), ψε(x; εj ), ψε(x; εj ′))

W(ψε(x; εj ), ψε(x; εj ′))
. (5.4)

The results for the first example in (5.3) are shown in figure 10(a). A typical function of this
new potential is depicted in figure 10(b) as well as its susy partner.

We can act in the same way with the Scarf potential to get its 2-susy partner Ṽs(x; εj , εj ′).
Then we arrive at similar conclusions with respect to the behaviour of regularizations under
2-susy transformations that we summarize in the following points:
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Figure 10. (a) The 2-susy partner (continuous curve) Ṽε (x; ε1, ε1′ ) of the ε-regular Scarf potential
Vε(x) for ε = 0.1 and a = 0.5 (compare with figure 8). (b) The lower band edge energy
eigenfunction (dashed curve) of the ε-regular potential (3.1) and its 2-susy partner for the same
values of the parameters as in (a).

(1) The potentials Vs and Ṽε(x; εj , εj ′) have singularities with the same coefficients, i.e., the
leading term around the singular points is k(k − 1)/x2 as x → 0.

(2) If H̃ s is supplied with the same boundary conditions at the singular points as Hs , then
both Hamiltonians will share the same spectrum. The corresponding eigenfunctions will
have the same character (diverging or vanishing) at the singular points.

(3) The family Ṽε(x; εj , εj ′) constitutes a regularization to Ṽs(x; εj , εj ′) in the same sense as
Vε does for Vs .

As a general conclusion of this section we can say that it is possible to make n-susy
transformations which are compatible with the regularization prescriptions. Even more,
these transformations supply a variety of regularization terms for the singularities starting
from a known one. In fact, the consistency of susy transformations and regularized Scarf
Hamiltonians is the reason why the regularized Scarf potential can be considered as a periodic
solvable potential [15], and therefore the usual agebraic methods can be applied to get the
spectrum. However, it seems that such a detail is completely forgotten in the literature dealing
with the Scarf potential as a periodic potential.

6. Concluding remarks

In this work we have dealt with the general problem of regularization of singular potentials
with a periodic character. So, we have focused our attention on the conditions on a class of
regular potentials Vε , which replaces the singularities by square wells, such that in a certain
limit the band structure of the conventional Scarf potential originates. If the singularities
are given in terms of k ∈ (1, 3/2) as k(k − 1)/ sin2 x, then the well’s intensity given by the
coefficient −a2 is opposite in sign and, in order to reproduce the Scarf bands, these intensities
must satisfy the relation (3.11) k = 1 + a tan a (and take the lowest solution for a).

Thus, one can look at the periodic potentials as systems giving rise to a sort of resonant
effect, coming from the interrelation beween the wavefunction of the particle and the period of
the potential. These resonant effects show that in certain energy regions the periodic potential
reproduces the exponential decay of a forbiden character corresponding to a particle whose
total energy is below the energy potential, or that in other regions such perodicity imitates
the transparency similar to a particle inside the continuous spectrum. Only for very special
conditions (supplied by relation (3.11)) the family Vε , as ε → 0, keeps the transparent bands
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finite, but otherwise they lead in the limit ε → 0 to wide forbidden zones separated only by
discrete levels.

We have also shown that the matching rules of the regularized Scarf potentials are
preserved under n-susy transformations. This is the reason why the usual algebraic methods
can be applied to solve correctly the spectrum of the regularized periodic Scarf potential, or
for any of its isospectral n-susy partners. In other words, just because of this consistency,
the regularized periodic Scarf potential can be considered inside the class of (algebraically)
solvable potentials.

There is a number of open problems that need further clarification; for example, the
importance of shape in regularizations, the equivalence of regularizations and the formal
manipulation of distribution terms in the regularizations, just to mention only a few. Work is
in progress on some of these problems.
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